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Single species diffusion-influenced reactionA¿A\aA: Validity of the Smoluchowski approach

Hyojoon Kim and Kook Joe Shin*
Department of Chemistry and Center for Molecular Catalysis, Seoul National University, Seoul 151-742, Korea

~Received 30 June 1999; revised manuscript received 5 November 1999!

We investigate the single species diffusion-influenced reaction,A1A→aA with a finite reactivity in all
dimensions. The reaction model includes a pure coagulation (a51) or a pure annihilation (a50) model. We
apply the hierarchical Smoluchowski approach to study the dimensional aspects of the fluctuation, reactivity,
particle size, anda(0<a<1). The theoretical results are compared with those of the Monte Carlo simulations
in one, two, and three regular dimensions. The simulation results reveal that the classical Smoluchowski
approach is exact in the short time limit in all dimensions and in the long time limit in three dimensions. The
hierarchical Smoluchowski approach is found to be numerically exact at all times in two and three dimensions.
A numerical method to obtain the exact result of the annihilation for a finite reactivity in one dimension is
presented. We also propose a quite accurate analytic solution for an arbitrarya for the infinite reactivity in one
dimension.

PACS number~s!: 05.40.2a, 05.50.1q, 05.70.Ln, 82.35.1t
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I. INTRODUCTION

The single species diffusion-influenced reactionA1A
→aA has been the subject of extensive theoretical, num
cal, and experimental studies@1–30#. The reaction mode
includes an annihilation (a50) or a coagulation (a51)
model. Besides the applicability to many experiments, th
models have attracted much attention theoretically beca
they provide one of the simplest examples of many part
diffusion-influenced reactions. Moreover, the exact res
known in one dimension~1D! @3–5# can be used to check th
validity of various theories proposed by many workers.

In the classical kinetics, the rate coefficient is set to b
constant and we obtain the long time asymptotic behavio
the A species as@A#;t21 regardless of the dimensionality
However, it is now well known that the long-time asympto
behavior, except for the exotic fractal distributions@26#, is
given by @2#

@A#;t2a with a5min~1, d/2!, ~1!

whered is the dimensionality of the system.
Although some theories have been successful to ob

the exact results for the annihilation and coagulation mod
in 1D, the approaches in those studies are rather specific
have difficulties in generalizing to other systems. Amo
various theoretical approaches, those based on a hierarc
Smoluchowski equations for the reduced distribution fu
tions of the reactant particles are particularly useful. Th
not only predict the correct long time asymptotic power-la
behavior but also provide a systematic and flexible theor
cal framework for dealing with the system with a comp
cated reaction mechanism. This line of development was
tiated by Waite@31# and Monchick et al. @32#. Lee and
Karplus @33# reformulated the hierarchical Smoluchows
approach~HSA!. The above HSA’s, however, adopted th
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reducedsuperposition approximation reproducing the sa
result of the classical Smoluchowski approach~SM! @34# for
the irreversible reaction system. The indirect correlation s
as the correlation between the like particles can be con
ered by employing the Kirkwood superposition approxim
tion ~KSA! @1,11,13#. Kuzovkov and Kotomin@1# adopted
the HSA with the KSA to investigate the two species syst
A1B→ inert and successfully attributed the long tim
asymptotic behavior of@A#;t2d/4 to the microscopic fluc-
tuation effect. However, they also found that the fluctuat
effect in the single-species system is too weak to change
asymptotic power law exponent at long times.

It is very interesting that the SM, which is the oldest a
the simplest theory in the diffusion influenced reaction fie
predicts the correct long-time asymptotic power law decay
given by Eq. ~1! @1,10,11#. Since the SM is a mean-field
theory and it does not consider the fluctuation effect,
anomalous power law decay in the single species sys
results from the dimensional restriction rather than the
croscopic fluctuation effect that changes the asympt
power-law decay in the two species system.

The purpose of the present work is to investigate the
mensional aspects of the single species reaction system
the HSA with two types of superposition approximations; t
reduced superposition approximation which leads to the
and the KSA. We consider a general coagulatio
annihilation model,A1A→aA in which a is a real value
within 0<a<1 and investigate the dimensional aspects
the fluctuation, reactivity, particle size, anda. Despite the
usefulness of the HSA with the KSA, the results can only
obtained numerically. On the other hand, some general
sults of the SM can be obtained analytically. In this way,
find some simple explanations about many interesting res
that were already reported by other complicated approac
We also believe that some of the present results are ne
revealed despite the long history of the SM.

The exact results in 1D have been reported only for
infinite reactivity. We find a numerical method to obtain th
exact result of the annihilation (a50) for a finite reactivity
case. We also propose an approximate solution for an a
ic
3426 © 2000 The American Physical Society
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trary value ofa for the infinite reactivity. In higher dimen
sions, one has to rely on the simulation method to check
validity of the developed theories. In most lattice-bas
Monte Carlo~MC! simulations, the particle size is ignore
even above two dimensions~2D! in which it affects the dy-
namics critically. We incorporate the particle size into t
simulation and compare the results with those of the H
quantitatively. Lin et al. @14# compared the results of th
above two superposition approximations on the single s
cies system in 1D. But they have never been compare
higher dimensions. We find that the HSA with the KS
gives the numerically exact results in higher dimensions
the results of the SM become exact at long times in th
dimensions~3D!.

The remains of this paper are organized as follows.
Sec. II, we extend the HSA to an arbitrarya and discuss the
analytical results of the SM. Numerical and simulation me
ods are presented in Sec. III. Theoretical results are c
pared with those of simulations in Sec. IV followed by se
eral concluding remarks in Sec. V.

II. THEORETICAL BACKGROUD

Kuzovkov and Kotomin@1# adopted the KSA in the HSA
and obtained the corresponding kinetic equations that ca
rewritten, for the general coagulation-annihilation modelA
1A→aA, as

d

dt
@A#52~12a/2!k~ t !@A#2, ~2!

k~ t ![E dr
2pd/2r d21

G~d/2!
S~r !r~r ,t !, ~3!

]

]t
r~r ,t !5@LAA~r !2S~r !#r~r ,t !

1~22a!k~ t !@A#r~r ,t !@12X~r ,t !#, ~4!

wherek(t) is the time-dependent rate coefficient andr(r ,t)
the pair correlation function. The reactive sink functionS(r )
and the nonreactive diffusive evolution operatorLAA(r ) are
given, respectively, by

S~r !5
k0G~d/2!d~r 2s!

2pd/2sd21 , ~5!
o

h

e

e
d

A

e-
in

d
e

n

-
-

-

be

LAA~r !5DS ]2

]r 2 1
d21

r

]

]r D , ~6!

where D(52DA) is the relative diffusion constant,k0 the
intrinsic reactivity,s the reaction distance,G(x) the gamma
function, andd(x) the Dirac delta function. For the regula
dimensions, the expressions ofX(r ,t) in Eq. ~4! were given
in Refs.@1# and @35#.

Note that when the particle size is very small,X(r ,t)
reduces tor(r ,t):

lim
s→0

X~r ,t !5r~r ,t !. ~7!

The physical meaning ofX(r ,t) is similar tor(r ,t) averaged
over the region covered by the reaction distance arounr
and, thus, one could use the point particle approximation
Eq. ~7! in the small particle size limit. Sincer(r ,t) is always
smaller than unity in the present system, so isX(r ,t).

The last term of Eq.~4! disappears in adopting the re
duced superposition approximation. In this way, the HS
can reproduce the result of the SM. In other words, the
ference between the HSA with the KSA and the SM is t
last term. From the derivation of the above results, one
know that the physical meaning of the last term is t
difference between the global concentration dec
@(22a)k(t)@A#r(r ,t)# and the competitive reaction
@(22a)k(t)@A#r(r ,t)X(r ,t)#. The local concentration fluc
tuation due to reaction can make the particles aggregate
the two species system but the aggregation in the single
cies system only leads to the reaction itself. This rather
celerates the global concentration change more than the c
petitive reaction. Consequently, the fluctuation effects
incorporated in the last term@1#. Although the SM considers
some spatial inhomogeneities like the direct pair correlati
the SM is a mean-field theory and neglects the local fluct
tion effect by setting the competitive reaction change eq
to the bulk concentration decay or by neglecting the indir
pair correlation.

Unfortunately, it is impossible to solve the above coupl
differential equations exactly and one has to solve them
merically as presented below. When the fluctuation term
neglected, we can obtain an analytical result which is a g
eralized version of the SM for the arbitrary reactivity (k0),
dimension (d), anda as
1

@A#
2

1

@A#0

5L21F ~12a/2!k0As/DKd/2~sAs/D !

Cdk0s2Kd/221~sAs/D !1s2As/DKd/2~sAs/D !
G , ~8!
whereL21@ f̃ (s)# denotes the inverse Laplace transform
f̃ (s), Cd[G(d/2)/2pd/2Dsd21, and Kv(x) the modified
Bessel function of the second kind. The derivation of t
above result is presented in Appendix A.

We now investigate the asymptotic expressions of Eq.~8!
in the long and short time limits. The asymptotic long tim
f

e

results depend ond as

lim
t→`

@A#5
G~12d/2!G~d/2!d

~12a/2!2d11pd/2Dd/2 t2d/2 ~d,2! ~9!
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lim
t→`

@A#5
k0G~d/221!14pd/2sd22D

~12a/2!k04pd/2sd22D
t21 ~d.2!.

~10!

For the critical two dimensions~2D!, the asymptotic expres
sion contains the logarithmic corrections as lim

t→`
@A#;(ln t)/t

@7,36#. These results clearly show that the SM predicts
same well-known asymptotic power-law decay for anya and
k0. For the infinite reactivity, the long time asymptotic co
centration is different from the finite reactivity case only f
d.2 as

lim
k0→`
t→`

@A#5
G~d/221!

~12a/2!4pd/2sd22D
t21 ~d.2!. ~11!

It is interesting to note that while the rate coefficient co
verges to a constant ast→` for d.2, it goes to zero ford
,2 as

lim
t→`

k~ t !5
2dpd/2Dd/2

G~12d/2!G~d/2!
t ~d/2!21→0 ~d,2!

~12!

lim
t→`

k~ t !5
k04pd/2sd22D

k0G~d/221!14pd/2sd22D
~d.2!.

~13!

This implies that the assumption of a constant rate coeffic
in the classical kinetics fails and it gives incorrect results
d,2. The dependence on the dimensionality arises from
fact that diffusion is not an effective mixing mechanism f
d,2 @15#. The restriction disappears in higher dimensio
Therefore, the failure of the classical kinetics in low dime
sions can be explained better by the wrong assumption
constant rate coefficient than by the neglect of the devia
of the spatial distribution from a random configuration sin
the latter effect is neglected also in 3D, for which the cla
sical kinetics predicts the correct long time power-law exp
nent. Therefore, the argument that the anomalous kine
cannot be accounted for in a mean-field reaction-diffus
model @5# is caused by the use of the constant rate coe
cient.

The long time asymptotic rate coefficient in the critic
dimension can be readily obtained from the general exp
sion of the SM@37# as

lim
t→`

k~ t !5
4pD

ln~4Dt/s2!22g14pD/k0 ~d52!,

~14!

whereg is the Euler constant. Note that the rate coefficie
vanishes very slowly due to the logarithmic dependence
2D but it does following the power-law behavior ford,2.

The fluctuation effect could be neglected in the lo
concentration limit since the local fluctuation term is mul
plied by the bulk concentration in Eq.~4!. The SM is exact in
this limit. This is not surprising since each pair of particles
implicitly assumed to be statistically independent in the S
e
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Note that the SM predicts that the concentration in the
agulation is twice as large as that in the annihilation not o
at long times but at all times.

On the other hand, the short time dynamics depends o
on k0 for all dimensions:

lim
t→0

k~ t !5k0, ~15!

lim
t→0

1

@A#
2

1

@A#0
5~12a/2!k0t. ~16!

The above expressions have no dependence on the di
sionality. This tells us that the short time dynamics
reaction-limited and it can also be described by the class
kinetics. The relative magnitude of two terms in the denom
nator of Eq.~8! determines whether the dynamics is reacti
limited or diffusion limited. Ask0 decreases, the second ter
dominates and the rate coefficient shows the reaction-lim
behavior, while the diffusion-limited behavior prevails ask0

increases. Interestingly, the reaction-limited behavior dis
pears for the infinite reactivity. The short time asympto
expressions for infinite reactivity is given by

lim
k0→`
t→0

1

@A#
2

1

@A#0
5

~12a/2!4p~d21!/2sd21AD

G~d/2!
t1/2.

~17!

Note that this expression shows not only the different pow
law behavior from Eq.~16! but also thed dependence in the
prefactor.

In the short time limit, the fluctuation term of Eq.~4! can
be neglected for the random initial condition. This can
explained by the fact that the local fluctuation is not y
sufficiently developed. Therefore, the results of the S
namely, Eqs.~16! and~17! areexactat short times. This can
explain the finding of Argyrakiset al. @15# that the single
species behavior appears at early times in the two spe
annihilation for which the SM predicts the same results
those in the single species model. One can expect that
SM is exact also for the two species system in the short t
limit. Of course, it fails at long times because of the fluctu
tion effect.

If we define the survival probabilityP(t)[@A#/@A#0 , one
can see from Eqs.~2! and~4! thatP(t) is independent ofa at
all times when@A#051/(22a) @20–22#. It is well known,
however, the concentration for the coagulation@A#c is twice
as large as that for the annihilation@A#a in the long time
limit without any restriction on@A#0 . This can be explained
as follows. Since the long time power-law exponent is n
affected by the fluctuation term, the asymptotic concen
tion is given by@A#;b(a)t2a, whereb(a) is a certain con-
stant depending ona. Thenr(r ,t) and, thus,k(t) are inde-
pendent ofa in the long time limit, which leads to the
relation @A#c52@A#a without any restriction on the initia
concentration. This result is, in fact, exact since the appro
mate nature of the HSA comes in only viaX(r ,t) in Eq. ~4!
due to the truncation of the hierarchy by the KSA but t
term includingX(r ,t) vanishes in the long time limit. Re
membering that the pair correlation function is always ind
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pendent ofa in the SM, one can conclude thatr(r ,t) de-
pends less ona in the HSA as the concentration is decreas
and/or the dimensionality is increased.

Recently, Molski@17# suggested an interesting argume
that the long time result may be different from the exa
result if the model allows the overlapping of particles at l
tice points. In order to check this argument, we solve
problem for the overlapping initial condition for the infinit
reactivity with the SM to give

1

@A#
2

1

@A#0

5L21H 12a/2

CdsAsD
F Kd/2~sAs/D !

Kd/221~sAs/D !

1
I d/2~sAs/D !

I d/221~sAs/D !
G J , ~18!

whereI v(x) is the modified Bessel function of the first kind
In the long time limit, the overlapped particles disappear a
Eq. ~18! correctly reduces to Eq.~8! for the infinitek0. This
tells us that the overlapping initial condition does not affe
the long time asymptotic behavior. It is also interesting
note that Eq.~18! reduces to Eq.~8! in the point particle limit
(s→0) since it is impossible for the point particles to ove
lap. Consequently, the overlapping initial condition does
affect the long time dynamics.

III. NUMERICAL METHOD

Since there is no analytical result except for a few
systems, one should rely on the numerical method to ob
the correct results. It is not easy to solve the above coup
differential equations Eqs.~2!–~4! even numerically. We re-
cently presented simple and efficient numerical methods
solving kinetic equations similar to the above equations@38#.
These methods utilize the finite-difference method for
pair distribution function and the Runge-Kutta method w
adaptive time steps to evolve the kinetic equation for
concentration. Because the main difficulty, especially for
long time dynamics, arises from implementing bounda
conditions, we introduced the boundary doubling method
reduce the truncation error, which results from the fact t
the outer spatial boundary is truncated at a finite separa
instead of infinity. The method is based on the fact that
range covered by diffusive motion is proportional tot1/2 and
thus the outer boundary can be simply doubled at every q
druple time.

The MC simulation method@39# that we employed in this
paper is explained as follows. The diffusive motion ofA
molecules can be described as random walks consisting
series of small steps. The average displacementr of random
walks is given by the Einstein-Smoluchowski relation:^r2&
52dDAt, whereDA is the self-diffusion constant ofA mol-
ecules. This relation is used to define the displacement
one MC step asDr 5A2dDADt, whereDr constitutes the
lattice constant andDt stands for the time taken in one M
step. This definition of the average displacement, along w
a lattice model, provides a connection between the MC s
and the real times for the dynamics of the system. The o
mum size ofDt and, therefore,Dr should be found since th
d
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smallDt increases the computational cost while the largeDt
decreases the accuracy.

The size of the system should be increased until the e
effect can be nearly neglected. The number of particle
determined by the size of system to maintain the given c
centration. This is the reason why the higher dimension
more difficult to carry out the simulation. The period
boundary condition and the minimum image convention
used as usual to minimize the edge effect.

Initially, particles are randomly created on sites in a reg
lar dimensional lattice. Each particle occupies several lat
points due to its sizes(.Dr ). For the point particle, it
occupies only one site. When the tried site is already oc
pied by other particles, another unoccupied site is tried
less the overlap of particles is allowed. After all the partic
are placed on the lattice, they start moving in random dir
tions. If one particle moves within the reaction distances of
the other, which is defined as a collision, a reaction m
occur with the presumed reaction probability. If a reacti
occurs, the particles are removed from the system accor
to the value ofa. For example, only one particle is remove
for the coagulation model and two particles for the annihi
tion. The microscopic reaction probability,p, which is the
ratio of the number of reactive collisions to the number
total collisions in a system, is related to the intrinsic react
ity, k0, appeared in the analytic theories. The relation
thought to be linear but the exact relation is yet to be cla
fied @29,40#. Unit reaction probability represents the case
infinite rate constant where every collision results in a re
tion.

When one is interested in the long time dynamics,
computational cost for the simulation is very high since t
edge effect becomes important at long times and the la
system size or the large number of particles are needed
pecially for 3D. The inclusion of the particle size effect fu
ther increases the computing time. The particle size is o
tuned up byDr and, therefore,Dt should be reduced to
obtain the converged result. We have used several meth
to reduce the computing time significantly. First, all pr
grams of the simulations were coded for parallel process
The present simulations are very well suited for the para
processing since they can average the results of each i
pendent ensemble, which can be easily parallelized into e
CPU. We can obtain the gain in computational speed
many times as the number of CPU’s. Our calculations w
done on an IBM SP2 model MPP~Massively Parallel Pro-
cessing! computer with 40 nodes. Secondly, one can use o
integer operations for the main MC steps for the latt
model. Most computer architectures are well optimized
the integer calculation. The fact that all particles move by
same distance in the lattice model leads to additional m
ods of improving the speed. We define the safe distanc
the distance a particle can travel without colliding with t
nearest-neighbor particles. Within this distance, one
move the particle safely without checking reactive collisio
which is the most time consuming part of the simulation. T
safe distance can be generated for no further cost in chec
the collision. And, of course, it should be updated when
particle moves by that distance. Such safe distances a
the multiple jump method. If the minimum safe distance
all the particles is larger than the single step size, all partic
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can move safely within the minimum distance. The spe
gain is proportional to the square of the step size incre
The time saving by utilizing the safe distance method
larger at long times when the concentration is low and
safe distance is large. Therefore, the safe distance meth
very efficient to investigate the long time dynamics.

IV. RESULTS AND DISCUSSION

For 1D systems, some exact results for the point part
and the infinite reactivity have been reported. Torney a
McConnell @3# obtained the exact result for the annihilatio
model with the random initial condition. For the coagulatio
Doering and ben-Avraham@5# obtained the exact result bu
unfortunately, it is not a closed form for the random initi
condition. For an arbitrary value ofa, we generalize the
exact result of Torney and McConnell approximately
given in Appendix B. The resulting approximate concent
tion in 1D for the infinitek0 can now be used to obtain th
accurate data forall times easily:

@A#'
2@A#0V~2@A#0ADt !

aV~2@A#0ADt !122a
, ~19!

whereV(x)[exp(x2)erfc(x), and erfc(x) is the complemen-
tary error function.

Doering and ben-Avraham also found a long time r
equationd@A#/dt52p(D/2)@A#3, which is different from
the familiar form of Eq.~2!. However, the exact long time
asymptotic concentration can also be obtained from the
miliar form of the rate equation,d@A#/dt52ADp/4t@A#2,
once we know the exact rate coefficient given in Appen
B.

In Fig. 1, we compare the time evolution of the conce
tration predicted by the SM and the HSA with the simulati
and we also test the accuracy of the above approxima
@Eq. ~19!# for a51 since the approximation is worst for th
coagulation model. We set the parameters as followsD
52.031025 cm2 s21, the random initial concentration@A#0

FIG. 1. The time dependence of the concentration for the coa
lation reaction in 1D obtained from the SM, HSA, approximate, a
simulation results. The simulation result almost coincides with
result of Eq. ~19!. Values of parameters used are:D52.0
31025 cm2 s21, @A#051.03109 m21, s50 m, p51 (k0→`).
d
e.
s
e
is

le
d

,

s
-

e

a-

x

-

n

51.03109 m21 ~the number density of 0.1!, the particle size
s50 m ~the point particle!, and the reaction probabilityp
51 ~which corresponds tok0→`!. The approximate solu-
tion gives the nearly indistinguishable result from that of t
simulation even for the relatively high initial density~0.1!.
Only at intermediate times it deviates slightly from the sim
lation result. It becomes more accurate for the lower va
of a.

The SM and the HSA give qualitatively correct long tim
asymptotic behavior~the slope of21/2!, but the quantitative
errors for the prefactors are 57% and 11%, respectively
previously shown by Linet al. @14#. We find an analytic
expression of the asymptotic concentration which shows
best fit of the numerical results of the HSA as

lim
t→`

@A#;
1

22a
A p

8Dt
. ~20!

From Fig. 1, we can conclude that the HSA describes
fluctuation effect well but not completely, which is in agre
ment with the previous result for the two species syst
@35,38#. We have also performed the simulation where t
overlap between particles is initially allowed. However,
distinguishable difference is found even at short times for
present parameter set.

The particle size~s! effect depends on the dimensionalit
The analytical results suggest that the rate coefficient v
ishes ass→0 for d.2 and, therefore, the concentratio
does not decay. This can be explained by the fact that
reactive encounter of particles cannot occur since the c
sion cross section vanishes. Interestingly, the SM pred
that thes-dependence disappears at all times in 1D. The s
effect in 1D is related to the fluctuation effect described
the HSA. The fluctuation accelerates the reaction rate as
gets larger. This can be easily understood since the reac
can occur faster at a larger reaction distance. Therefore, ts
dependence comes in only viaX(r ,t) and it is expected to
vanish at long times in 1D.

The particle size effect on the time evolution of the co
centration in 1D is shown in Fig. 2 for the annihilation. Th
parameters are the same as before except the particle

u-
d
e

FIG. 2. The particle-size effect@s50 ~the upper group! and
5310210 m ~the lower group!# on the time dependence of th
concentration for the annihilation in 1D obtained from the S
HSA, and simulation results. Parameters are the same as in F
excepts.
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~s50 and 5310210m!. Since there is no exact result for
finite s, we compare the SM and HSA results with the sim
lation. As previously shown, the SM predicts that thes de-
pendence disappears in 1D. However, the simulation res
clearly show that the particle-size effect is important in t
transient time region even in 1D. The HSA predicts the c
rect qualitative trends for the size effect. But it deviates fro
the simulation result more at the transient time region as
increases. This is consistent with the fact that the HSA c
not describe the fluctuation effect completely. It can be e
mated from the numerical calculations that the point part
approximation@Eq. ~7!# is valid whens,1.0310210m. As
expected, the particle size effect disappears at long tim
We can conclude that ass gets smaller, the long time
asymptotic behavior appears at an earlier time. This can
to verify the universal behavior in higher dimensions w
the experiments. For the investigation of the particle s
effect by the simulation, one needs to be careful in check
the convergence of the result because a smaller size o
lattice spacing is required. For example, the data in Fig. 2
obtained by using the size of the lattice spacing down
about 5310213m.

The simulation results for the finite reactivity effect on t
time evolution of the concentration for several values of
reaction probability in 1D are shown in Fig. 3 for the ann
hilation model. The parameters are the same as in Fig
except the reaction probability. As the SM predicts, the
haviors at short times are different depending on whethek0

is infinite ~the slope of 1/2! or finite ~the slope of 1!. At long
times, all the curves show the slope of 1/2, which is ind
pendent of the reactivity@24,25#. In fact, the slope for the
infinite reactivity is 1/2 at both short and long time limits
1D. This makes the curve nearly linear. Ford.2, however,
the long time slope becomes 1 for any reactivity but
amplitude depends slightly on the reactivity@see Eqs.~10!
and ~11!#. Lin et al. @23# showed by the 3D simulation fo
the infinite k0 that, at early times, the slope is in the ran
0.8;0.9 not unity. Since the slope changes from 1/2 at sh
times to 1 at long times in 3D, it appears that their simulat
may not have reached sufficiently short times.

Some people introduced the crossover timetc at which
the reaction-limited behavior is changed to the diffusio
limited behavior@25,29,30#. Let us define the crossover tim

FIG. 3. The finite reactivity effect on the time dependence of
concentration for the annihilation in 1D obtained from the simu
tion result. Parameters are the same as in Fig. 1 exceptp.
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as the time at which the two asymptotic lines of the ra
coefficient in both time limits meet. From the results of t
SM results for the finitek0, we find

tc;Fk0G~12d/2!G~d/2!

2dpd/2Dd/2 G2/~d22!

~d,2!. ~21!

In 1D, the exact crossover time can be obtained astc
;Dp/(k0)2, which is larger than that of Eq.~21!. Therefore,
the slope change occurs earlier in the SM. It is worthwhile
note that there occur other changes of the slope of the
coefficient for the infinitek0. We find

tc;
s2

4pD FG~d/221!

G~d/2! G2

~d.2!, ~22!

tc;
s2

4D FG~12d/2!

p1/2 G2/~d21!

~d,2, dÞ1!. ~23!

In Figs. 4 and 5, we plot the time evolution of the co
centration for the annihilation and the coagulation in 2D a

e
- FIG. 4. The time dependence of the concentration for the a
hilation and coagulation in 2D obtained from the SM, HSA, a
simulation results. Parameters are the same as in Fig. 1 ex
@A#051.031019 m22 ands51.0310210 m.

FIG. 5. The time dependence of the concentration for the a
hilation and coagulation in 3D obtained from the SM, HSA, a
simulation results. Parameters are the same as in Fig. 4 ex
@A#051.031029 m23.
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3D, respectively. We set the parameters as follows:D52.0
31025 cm22 s21, @A#051.031019m22~2D! and 1.0
31029m23 ~3D! ~the number density is 0.1 in both dimen
sions!, s51.0310210m, andp51. In both dimensions the
exact results have never been obtained. Therefore, the s
lation results are expected to be useful to test the appr
mate theories. Surprisingly, the HSA gives nearly identi
results with those of the simulation. This means that the H
can describe many particle problem fairly well by incorp
rating the indirect pair correlation through the KSA. Wh
one needs the accurate numerical data for the present sy
the HSA ford.2 and the approximate solution Eq.~19! for
d51 are very useful. The computational cost for the sim
lation in 3D is very high@23#.

It is very interesting that the SM also gives the nume
cally exact result at long times in 3D. To clarify the dime
sional dependence, we plot the time evolution of the r
coefficient predicted in the SM and the HSA for several
mensions for the infinite reactivity in Fig. 6 in reduced uni
For non-integer dimensions, we perform the inverse Lapl
transform of Eq.~A6! for the SM and utilize the point par
ticle approximation Eq.~7! for the HSA. It is clearly shown
that the SM gives the exact rate coefficient at long times
only 3D but also above 2D since the HSA is numerica
exact above 2D. For higher dimensions, the results
shown to coincide with each other earlier. The well-know
fact that the SM becomes more accurate as the dimensio
ity increases is numerically confirmed. This result indica
that the fluctuation effect gets smaller since the diffus
becomes a more effective mixing mechanism in higher
mensions. Hence, we conclude that the fluctuation effect
be ignored and the SM becomes exact at long times fod
.2. This is the reason why the SM has been so successf
3D. We hope that this exact long time result could be
stimulus to finding an exact solution for all times in high
dimensions or at least a rigorous proof of the above fact

For the critical 2D, the results of both theories in Fig.
converge slowly due to the logarithmic correction. Equat
~14! reveals that the rate coefficient becomes independen
k0 ands at long times also in 2D but the dependence dis
pears slowly.

FIG. 6. The time dependence of the rate coefficient for the
nihilation predicted in the SM and the HSA in several dimensio
~d’s! for p51.
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V. CONCLUDING REMARKS

We have discussed the kinetics of the single species r
tion, A1A→aA. The long time asymptotic power law be
havior results from the dimensional restriction rather than
microscopic fluctuation which, however, affects the dyna
ics significantly. The simulation results are compared w
the various theoretical approaches. The main conclusions
as follows:

~1! The SM is exact in the short time and/or the lo
concentration limits for all dimensions. It also becomes ex
in the long time limit ford.2.

~2! Regarding the reactivity effect, the SM predicts t
correct behavior. The asymptotic short time behavior
@A#212@A#0

21 is ;t for the finitek0 and;t1/2 for the infi-
nite k0 for all dimensions. At long times,@A#;t2a with a
5min(1,d/2) but the concentration is independent ofk0 only
for d,2.

~3! The SM predicts that the pair correlation function
always independent ofa. However, the pair correlation func
tion and, therefore, the rate coefficient are shown to be in
pendent ofa only in the short time, long time, and/or low
concentration limits. In these cases, the concentration for
coagulation is simply related to that for the annihilation.

~4! The SM predicts that the particle size effect disappe
in the long time limit ford,2 and at all times in 1D. How-
ever, the HSA and simulation results reveal that the partic
size effect becomes apparent in the transient time reg
even in 1D. Of course, it becomes more important in hig
dimensions.

~5! The HSA is found to give the numerically exact resu
for all times in 2D and 3D.

~6! A numerical method by which the exact result can
obtained for a finite reactivity in the annihilation model
suggested in 1D. We also present an approximate solu
for an arbitrarya and for the infinite reactivity in 1D unde
the assumption that the rate coefficient is independent oa.
This solution becomes exact in the short and long time l
its.
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APPENDIX A: GENERAL RESULT
OF THE SMOLUCHOWSKI APPROACH

When the last term in the right hand side in Eq.~4! can be
neglected, we can solve the results of HSA analytically
the following random initial condition and the radiatio
boundary condition.

r~r ,0!51, ~A1!

F d

dr
r~r ,t !G

r 5s

5k0Cdr~s,t !, ~A2!

r~r→`,t !51, ~A3!

-
s
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whereCd is defined in Eq.~8!. The solution in terms of the Laplace transform,f̃ (s)[*0
`dt f(t)e2st, is given by

r̃~r ,s!5
1

s H 12
Cdk0r 2d/211Kd/221~rAs/D !

s2d/211@Cdk0Kd/221~sAs/D !1As/DKd/2~sAs/D !#
J , ~A4!
d

tio

la

o

be
el

ion
esult

te

on
con-

e

f

ate

on
whereKv is the modified Bessel function of the second kin
Using Eq.~3! or from the well known expression@41#

k~ t !5
1

Cd
F d

dr
r~r ,t !G

r 5s

, ~A5!

the rate coefficient can be obtained from the pair correla
function as@42,43#

k̃~s!5
k0As/DKd/2~sAs/D !

Cdk0sKd/221~sAs/D !1sAs/DKd/2~sAs/D !
.

~A6!

The concentration can be obtained from the following re
tion to give Eq.~8!:

1

@A#
2

1

@A#0
5L21F ~12a/2!k̃~s!

s
G , ~A7!

whereL21@ f̃ (s)# denotes the inverse Laplace transform
f̃ (s).

APPENDIX B: NUMERICALLY EXACT
AND APPROXIMATE SOLUTIONS IN ONE DIMENSION

The exact rate coefficient for the infinite reactivity can
readily obtained from the result of Torney and McConn
@3# for a50 as

kexact~ t !5
A4D/pt24@A#0DV~2@A#0ADt !

V~2@A#0ADt !2
, ~B1!
.

n

-

f

l

whereV(x)[exp(x2)erfc(x) with erfc(x) the complementary
error function. For the finite reactivity case, no exact solut
has been obtained. However, one can obtain the exact r
numerically from Eqs.~A7! and ~B1! with the well known
relation@41# between rate coefficients with finite and infini
reactivities to give

1

@A#
2

1

@A#0

5L21F k0k̃exact~s,k0→`!

s2k̃exact~s,k0→`!1sk0G . ~B2!

This numerical calculation is superior to the simulati
method because it is free of stochastic noises. Note the
centration is independent of the reactivity in the long tim
limit ( s→0) and Eq. ~16! holds in the short time limit
(s→`).

If the rate coefficient is assumed to be independent oa,
we can obtain the approximate solution for an arbitrarya
using Eq.~B1! as

1

@A#
2

1

@A#0

;L21F ~12a/2!k0k̃exact~s,k0→`!

s2k̃exact~s,k0→`!1sk0 G . ~B3!

For the infinite reactivity, this equation reduces to

1

@A#
2

1

@A#0
;

~22a!~V~2@A#0ADt !21!

2@A#0V~2@A#0ADt !
, ~B4!

which can be rearranged into Eq.~19!. Equation~B3! be-
comes exact in the short and long time limits where the r
coefficient becomes independent ofa. It is not only exact for
the annihilation model but also in the low-concentrati
limit.
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