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Single species diffusion-influenced reactiol+A— aA: Validity of the Smoluchowski approach
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We investigate the single species diffusion-influenced reacionA— «A with a finite reactivity in all
dimensions. The reaction model includes a pure coagulatienl() or a pure annihilation¢=0) model. We
apply the hierarchical Smoluchowski approach to study the dimensional aspects of the fluctuation, reactivity,
particle size, and(0<a=<1). The theoretical results are compared with those of the Monte Carlo simulations
in one, two, and three regular dimensions. The simulation results reveal that the classical Smoluchowski
approach is exact in the short time limit in all dimensions and in the long time limit in three dimensions. The
hierarchical Smoluchowski approach is found to be numerically exact at all times in two and three dimensions.
A numerical method to obtain the exact result of the annihilation for a finite reactivity in one dimension is
presented. We also propose a quite accurate analytic solution for an arhifi@rihe infinite reactivity in one
dimension.

PACS numbeps): 05.40—-a, 05.50+q, 05.70.Ln, 82.35:t

[. INTRODUCTION reducedsuperposition approximation reproducing the same
result of the classical Smoluchowski approd8&i) [34] for

The single species diffusion-influenced reactir- A the irreversible reaction system. The indirect correlation such
—aA has been the subject of extensive theoretical, numeri- y '

cal, and experimental studiéd—30. The reaction model 23 the correlation between the like particles can be consid-

. S : ered by employing the Kirkwood superposition approxima-
includes an annihilation =0) or a coagulation ¢=1) on (K)éA) [Fi 1y1 193 Kuzovkov and Fl)<otrz)mir{1] azgpted

. A . |
model. Besides the applicability to many experiments, thes%1 . . : .
models have attracted much attention theoretically becaus € HS’/'.\ with the KSA to |nvest|gate.the two species sygtem
+B—inert and successfully attributed the long time

they provide one of the simplest examples of many particl symptotic behavior ofA]~t~9 to the microscopic fluc-

iffusion-influen r ions. Moreover, the ex resul ) .
diffusio uenced reactions. Moreover, the exact result uation effect. However, they also found that the fluctuation

known in one dimensiofilD) [3—5] can be used to check the . . . )
validity of various theories proposed by many workers. effect in the single-species system is too_weak to change the
gsymptotic power law exponent at long times.

In the classical kinetics, the rate coefficient is set to be It is very interesting that the SM, which is the oldest and

constant and we obtain the long time asymptotic behavior O{he simplest theorv in the diffusion influenced reaction field
the A species agA]~t ! regardless of the dimensionality. red'lctspthe correc){ Ilon -t'mlel;sj ml to?c ower la Idec; e{s
However, it is now well known that the long-time asymptotic Siver; by Eq.(1) [1,10 %J}I Sincg tr?e SIMp i;Na m\évan-fie%i
behavior, except for the exotic fractal distributiof25], is theory and it does not consider the fluctuation effect, the

given by[2] ) . )
anomalous power law decay in the single species system
results from the dimensional restriction rather than the mi-
croscopic fluctuation effect that changes the asymptotic
power-law decay in the two species system.
whered is the dimensionality of the system. The purpose of the present work is to investigate the di-
Although some theories have been successful to obtaimensional aspects of the single species reaction system with
the exact results for the annihilation and coagulation modelthe HSA with two types of superposition approximations; the
in 1D, the approaches in those studies are rather specific amdduced superposition approximation which leads to the SM
have difficulties in generalizing to other systems. Amongand the KSA. We consider a general coagulation-
various theoretical approaches, those based on a hierarchy arfinihilation model A+A— aA in which « is a real value
Smoluchowski equations for the reduced distribution func-within 0O<a<1 and investigate the dimensional aspects of
tions of the reactant particles are particularly useful. Theythe fluctuation, reactivity, particle size, ard Despite the
not only predict the correct long time asymptotic power-lawusefulness of the HSA with the KSA, the results can only be
behavior but also provide a systematic and flexible theoretiebtained numerically. On the other hand, some general re-
cal framework for dealing with the system with a compli- sults of the SM can be obtained analytically. In this way, we
cated reaction mechanism. This line of development was inifind some simple explanations about many interesting results
tiated by Waite[31] and Monchicket al. [32]. Lee and that were already reported by other complicated approaches.
Karplus [33] reformulated the hierarchical Smoluchowski We also believe that some of the present results are newly
approach(HSA). The above HSA's, however, adopted the revealed despite the long history of the SM.
The exact results in 1D have been reported only for the
infinite reactivity. We find a numerical method to obtain the
* Author to whom correspondence should be addressed. Electrongxact result of the annihilationo(=0) for a finite reactivity
address: statchem@plaza.snu.ac.kr case. We also propose an approximate solution for an arbi-

[A]~t™2 with a=min(1, d/2), (1)
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trary value of« for the infinite reactivity. In higher dimen- P2 d—=1 9
sions, one has to rely on the simulation method to check the Laa(N)=D| -2+ —— ﬁ_r)' (6)

validity of the developed theories. In most lattice-based
Monte Carlo(MC) simulations, the particle size is ignored

even above two dimension8D) in which it affects the dy- intrinsic reactivity,o the reaction distancé;(x) the gamma

namics critically. We incorporate the particle size into the
simulation and compare the results with those of the HSAfunCtlon andd(x) the Dirac delta function. For the regular

guantitatively. Linet al. [14] compared the results of the %lrg(aer;zl([)f]sa:]r:je[;%pressmnsX)(r 1) in Eq. (4) were given
above two superposition approximations on the single spe Note that when th ticle size i A(r t
cies system in 1D. But they have never been compared in ote that when the particle size is very sma(r.t)

higher dimensions. We find that the HSA with the KSA reduces top(r,t):

gives the numerically exact results in higher dimensions and

the results of the SM become exact at long times in three

dimensiong3D).

The remains of this paper are organized as follows. | . . o

Sec. Il, we extend the HgApto an arbi?ranmnd discuss the nThe phyS|caI.mean|ng oA(r.1) is S|m|lar_t0p(r_,t) averaged

analytical results of the SM. Numerical and simulation meth-2Ver the region covered by the. reacthn d|stancg arqund
and, thus, one could use the point particle approximation of

ods are presented in Sec. lll. Theoretical results are co . ) LS .
pared with those of simulations in Sec. IV followed by sev- q.(7) in the sm'aII .part|cle size limit. Since(r,1) is always
eral concluding remarks in Sec. V. smaller than unity in the present system, S(X(s,_t).
The last term of Eq(4) disappears in adopting the re-
duced superposition approximation. In this way, the HSA
Il. THEORETICAL BACKGROUD can reproduce the result of the SM. In other words, the dif-

Kuzovkov and Kotomir{1] adopted the KSA in the HSA ference between the HSA with the KSA and the SM is the

and obtained the corresponding kinetic equations that can Hast term. From the derivation of the above results, one can

rewritten, for the general coagulation-annihilation model know that the physical meaning of the last term is the
+A—aA, as difference between the global concentration decay

[(2—a)k(t)[A]p(r,t)] and the competitive reaction

where D(=2D,) is the relative diffusion constantk® the

lim X(r,t)=p(r,t). (7

o—0

d [(2—a)k(t)[A]p(r,t)X(r,t)]. The local concentration fluc-
m[A]: —(1-al2k(D)[AP?, (2) " tuation due to reaction can make the particles aggregate as in
the two species system but the aggregation in the single spe-
ad/2rd-1 cies system only leads to the reaction itself. This rather ac-
k(t)= f dr ——>— F(d2) S(r)p(r,t), (3)  celerates the global concentration change more than the com-

petitive reaction. Consequently, the fluctuation effects are
incorporated in the last terfd]. Although the SM considers
Ep(r,t)z[LAA(r)—S(r)]p(r,t) some spatial inhomogeneities like the direct pair correlation,
the SM is a mean-field theory and neglects the local fluctua-
+(2—a)k(H)[A]p(r,H)[1—X(r,t)], (4  tion effect by setting the competitive reaction change equal
to the bulk concentration decay or by neglecting the indirect
wherek(t) is the time-dependent rate coefficient aid,t) pair correlation.

the pair correlation function. The reactive sink functig(r) Unfortunately, it is impossible to solve the above coupled
and the nonreactive diffusive evolution operatgr,(r) are  differential equations exactly and one has to solve them nu-
given, respectively, by merically as presented below. When the fluctuation term is

neglected, we can obtain an analytical result which is a gen-
eralized version of the SM for the arbitrary reactivity’),
dimension ¢l), anda as

KT (d/2) 8(r — o)
N=—— a1 5

L_L_L—l (1— a/2)k°\/s/DK (o \sID) ®
[A] [Alo Cak®?K o1 (0 \S/D) + 52 VsIDK go( o \S/D) |

whereL~1[f(s)] denotes the inverse Laplace transform offesults depend od as
T(s), Cq=I'(d/2)/27¥?D¢""!, and K,(x) the modified
Bessel function of the second kind. The derivation of the
above result is presented in Appendix A. _
We now investigate the asymptotic expressions of(By. lim[A]= ra dl?ﬂ(dd/é)dd/z
in the long and short time limits. The asymptotic long time t—o —al2)2 D

9 (d<2) (9
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_ KT (d/2—1) +47%%5972D ) Note that the SM predicts that the concentration in the co-
lim [A]= —— o az a2t - (d>2). agulation is twice as large as that in the annihilation not only
o (1—al2)k’47%<c" " “D . !
- at long times but at all times.

(10 On the other hand, the short time dynamics depends only

0 H H .
For the critical two dimension@D), the asymptotic expres- on k™ for all dimensions:

sion contains the logarithmic correctionstas [l (In t)/t lim k(t)=Kk° (15)
[7,36]. These results clearly show that the SM predicts the t—0

same well-known asymptotic power-law decay for angnd

k°. For the infinite reactivity, the long time asymptotic con- 1 1 o

centration is different from the finite reactivity case only for tlm [A] [Al, =(1=al2)k’t. (16)
d>2 as

The above expressions have no dependence on the dimen-
lim [A]= F(dlz_d/i-)dfz t=1 (d>2). (12 sionality. This tells us that the short time dynamics is
WO on (1— al2)47%c" “D reaction-limited and it can also be described by the classical
t—oo kinetics. The relative magnitude of two terms in the denomi-
nator of Eq.(8) determines whether the dynamics is reaction
It is interesting to note that while the rate coefficient con-|imited or diffusion limited. Ask® decreases, the second term
verges to a constant as- for d>2, it goes to zero fod  dominates and the rate coefficient shows the reaction-limited

<2 as behavior, while the diffusion-limited behavior prevails ks
Ao di2 increases. Interestingly, the reaction-limited behavior disap-
lim k(t)= 279D {9210 (d<2) pears for the infinite reactivity. The short time asymptotic
o - T'(1-d/2)T(d/2) expressions for infinite reactivity is given by
12
42 i L (1-al4r' V241D
im KO K04 79259-2D) (d=2) kolinoc [A] [A]O_ I'(d/2) .
oM = T (di2—1) + 477269 2D : t=0 .
(13

Note that this expression shows not only the different power-

This implies that the assumption of a constant rate coefficiengy pehavior from Eq(16) but also thed dependence in the
in the classical kinetics fails and it gives incorrect results forprefactor.

d<2. The dependence on the dimensionality arises from the |n the short time limit, the fluctuation term of E€4) can

fact that diffusion is not an effective mixing mechanism for pe neglected for the random initial condition. This can be
d<2 [15]. The restriction disappears in higher dimensions.explained by the fact that the local fluctuation is not yet
Therefore, the failure of the classical kinetics in low dimen-sufﬁcienﬂy developed. Therefore, the results of the SM,
sions can be explained better by the wrong assumption of Aamely, Eqs(16) and(17) areexactat short times. This can
constant rate coefficient than by the neglect of the deV|at|0@Xp|ain the finding of Argyrakiset al. [15] that the single
of the spatial distribution from a random configuration sincespecies behavior appears at early times in the two species
the latter effect is neglected also in 3D, for which the clas-annihilation for which the SM predicts the same results as
sical kinetics predicts the correct long time power-law expothose in the single species model. One can expect that the
nent. Therefore, the argument that the anomalous kineticgm is exact also for the two species system in the short time
cannot be accounted for in a mean-field reaction-diffusionimit. Of course, it fails at long times because of the fluctua-
model[5] is caused by the use of the constant rate coeffition effect.
cient. . _ o - If we define the survival probabilitl?(t)=[A]/[A]y, one

The long time asymptotic rate coefficient in the critical can see from Eq$2) and(4) thatP(t) is independent of at
dimension can be readily obtained from the general expres)| times when[A]y=1/(2— @) [20—22. It is well known,

sion of the SM[37] as however, the concentration for the coagulatién.. is twice
as large as that for the annihilatio’\], in the long time
lim k(t)= 47D (d=2) limit without any restriction ofA]y. This can be explained
oo In(4Dt/ %) —2y+47D/K° ' as follows. Since the long time power-law exponent is not

(14) affected by the fluctuation term, the asymptotic concentra-
tion is given by A]~b(a)t ™2, whereb(«) is a certain con-
where y is the Euler constant. Note that the rate coefficientstant depending or. Thenp(r,t) and, thusk(t) are inde-
vanishes very slowly due to the logarithmic dependence ipendent of« in the long time limit, which leads to the
2D but it does following the power-law behavior fdK 2. relation [A].=2[A], without any restriction on the initial
The fluctuation effect could be neglected in the low-concentration. This result is, in fact, exact since the approxi-
concentration limit since the local fluctuation term is multi- mate nature of the HSA comes in only Vigr,t) in Eq. (4)
plied by the bulk concentration in E¢d). The SMis exactin  due to the truncation of the hierarchy by the KSA but the
this limit. This is not surprising since each pair of particles isterm includingX(r,t) vanishes in the long time limit. Re-
implicitly assumed to be statistically independent in the SM.membering that the pair correlation function is always inde-
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pendent ofa in the SM, one can conclude thafr,t) de- smallAt increases the computational cost while the lakge
pends less om in the HSA as the concentration is decreaseddecreases the accuracy.
and/or the dimensionality is increased. The size of the system should be increased until the edge

Recently, Molski[17] suggested an interesting argumenteffect can be nearly neglected. The number of particles is
that the long time result may be different from the exactdetermined by the size of system to maintain the given con-
result if the model allows the overlapping of particles at lat-centration. This is the reason why the higher dimension is
tice points. In order to check this argument, we solve thengre difficult to carry out the simulation. The periodic
probl_er_n for_ the overlappin_g initial condition for the infinite boundary condition and the minimum image convention are
reactivity with the SM to give used as usual to minimize the edge effect.

Initially, particles are randomly created on sites in a regu-

1 1 1[ 1—al2 | Kyo(oVs/D) lar dimensional lattice. Each particle occupies several lattice
—— ——=L" points due to its sizer(>Ar). For the point particle, it
[A] [Alo CysVsD | Kgp-1(oVs/D) occupies only one site. When the tried site is already occu-

\/— pied by other particles, another unoccupied site is tried un-
. lgr2( o VS/D) 18 less the overlap of particles is allowed. After all the particles
|d/2—1(0'\/%) ’ (18) are placed on the lattice, they start moving in random direc-

tions. If one particle moves within the reaction distaicef

) » ) ) ) the other, which is defined as a collision, a reaction may
wherel ,(x) is the modified Bessel function of the first kind. 5ccour with the presumed reaction probability. If a reaction
In the long time limit, the overlapped particles disappear angyccyrs, the particles are removed from the system according
Eq. (18) correctly reduces to Eq8) for the infinitek®. This  tq the value ofw. For example, only one particle is removed
tells us that the overlapping initial condition does not affectiy, the coagulation model and two particles for the annihila-
the long time asymptotic behavior. It is also interesting totjon. The microscopic reaction probabilitp, which is the
note that Eq(18) reduces to Eq8) in the point particle limit  ratio of the number of reactive collisions to the number of
(0—0) since it is impossible for the point particles to over- yotg collisions in a system, is related to the intrinsic reactiv-
lap. Consequently, the overlapping initial condition does NOfty KO, appeared in the analytic theories. The relation is

affect the long time dynamics. thought to be linear but the exact relation is yet to be clari-
fied [29,40. Unit reaction probability represents the case of
IIl. NUMERICAL METHOD infinite rate constant where every collision results in a reac-

tion.

Since there is no analytical result except for a few 1D When one is interested in the long time dynamics, the
systems, one should rely on the numerical method to obtaisomputational cost for the simulation is very high since the
the correct results. It is not easy to solve the above coupleddge effect becomes important at long times and the large
differential equations Eqs$2)—(4) even numerically. We re-  system size or the large number of particles are needed, es-
cently presented simple and efficient numerical methods fopecially for 3D. The inclusion of the particle size effect fur-
solving kinetic equations similar to the above equati@&.  ther increases the computing time. The particle size is only
These methods utilize the finite-difference method for thewned up byAr and, thereforeAt should be reduced to
pair distribution function and the Runge-Kutta method with optain the converged result. We have used several methods
adaptive time steps to evolve the kinetic equation for theo reduce the computing time significantly. First, all pro-
concentration. Because the main difficulty, especially for thegrams of the simulations were coded for parallel processing.
long time dynamics, arises from implementing boundaryThe present simulations are very well suited for the parallel
conditions, we introduced the boundary doubling method tgrocessing since they can average the results of each inde-
reduce the truncation error, which results from the fact thabendent ensemble, which can be easily parallelized into each
the outer spatial boundary is truncated at a finite separatiogPU. We can obtain the gain in computational speed as
instead of infinity. The method is based on the fact that thenany times as the number of CPU’s. Our calculations were
range covered by diffusive motion is proportionaltt and  done on an IBM SP2 model MP@Massively Parallel Pro-
thus the outer boundary can be simply doubled at every quaessing computer with 40 nodes. Secondly, one can use only
druple time. integer operations for the main MC steps for the lattice

The MC simulation methof39] that we employed in this  model. Most computer architectures are well optimized for
paper is explained as follows. The diffusive motion Af  the integer calculation. The fact that all particles move by the
molecules can be described as random walks consisting ofgame distance in the lattice model leads to additional meth-
series of small steps. The average displacemaitrandom  ods of improving the speed. We define the safe distance as
walks is given by the Einstein-Smoluchowski relatign®)  the distance a particle can travel without colliding with the
=2dDut, whereD, is the self-diffusion constant gk mol-  nearest-neighbor particles. Within this distance, one can
ecules. This relation is used to define the displacement fomove the particle safely without checking reactive collisions
one MC step ad\r=\2dD,At, whereAr constitutes the which is the most time consuming part of the simulation. The
lattice constant andt stands for the time taken in one MC safe distance can be generated for no further cost in checking
step. This definition of the average displacement, along withhe collision. And, of course, it should be updated when the
a lattice model, provides a connection between the MC stepsarticle moves by that distance. Such safe distances allow
and the real times for the dynamics of the system. The optithe multiple jump method. If the minimum safe distance of
mum size ofAt and, thereforeAr should be found since the all the particles is larger than the single step size, all particles
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FIG. 1. The time dependence of the concentration for the coagux 10 *°m (the lower group] on the time dependence of the
lation reaction in 1D obtained from the SM, HSA, approximate, andconcentration for the annihilation in 1D obtained from the SM,
simulation results. The simulation result almost coincides with theHSA, and simulation results. Parameters are the same as in Fig. 1
result of Eg. (19). Values of parameters used ar®=2.0  excepto.
x10 %cnmP s, [A]p=1.0x10°m™%, 0=0m, p=1 (k®—).

=1.0x10° m™! (the number density of 0)1the particle size
can move safely within the minimum distance. The speed”~0 M (the point particl and the reaction probabilitp
gain is proportional to the square of the step size increase; 1 (Which corresponds t&"—o). The approximate solu-
The time saving by utilizing the safe distance method istion gives the nearly indistinguishable result from that of the
larger at long times when the concentration is low and theésimulation even for the relatively high initial densi9.1).

safe distance is large. Therefore, the safe distance method @Nly at intermediate times it deviates slightly from the simu-
very efficient to investigate the long time dynamics. lation result. It becomes more accurate for the lower value

of a.
The SM and the HSA give qualitatively correct long time
asymptotic behaviofthe slope of-1/2), but the quantitative
For 1D systems, some exact results for the point particl€rrors for the prefactors are 57% and 11%, respectively, as
and the infinite reactivity have been reported. Torney andreviously shown by Linet al. [14]. We find an analytic
McConnell[3] obtained the exact result for the annihilation expression of the asymptotic concentration which shows the
model with the random initial condition. For the coagulation, best fit of the numerical results of the HSA as

IV. RESULTS AND DISCUSSION

Doering and ben-Avrahaiib] obtained the exact result but, 1
unfortunately, it is not a closed form for the random initial lim [A]~ N (20)
condition. For an arbitrary value of, we generalize the tosco 2—a V8Dt

exact result of Torney and McConnell approximately as _ '
given in Appendix B. The resulting approximate concentra-From Fig. 1, we can conclude that the HSA describes the
tion in 1D for the infinitek® can now be used to obtain the fluctuation effect well but not completely, which is in agree-

accurate data foall times easily: ment with the previous result for the two species system

[35,38. We have also performed the simulation where the

2[A]OQ(2[A]0\/E) overlap between particles is initially allowed. However, no

[A]= , (29 distinguishable difference is found even at short times for the
aQ(2[A]p\Dt)+2 -« present parameter set.

The particle sizéo) effect depends on the dimensionality.
whereQ(x)=exp¢)erfc(x), and erfcg) is the complemen-  The analytical results suggest that the rate coefficient van-
tary error function. ishes asoc—0 for d>2 and, therefore, the concentration

Doering and ben-Avraham also found a long time ratedoes not decay. This can be explained by the fact that the
equationd[A]/dt=— m(D/2)[A]%, which is different from  reactive encounter of particles cannot occur since the colli-
the familiar form of Eq.(2). However, the exact long time sjon cross section vanishes. Interestingly, the SM predicts
asymptotic concentration can also be obtained from the fathat theo-dependence disappears at all times in 1D. The size
miliar form of the rate equatiord[A]/dt=— D w/4t[A]?, effect in 1D is related to the fluctuation effect described by
once we know the exact rate coefficient given in Appendixthe HSA. The fluctuation accelerates the reaction rate as
B. gets larger. This can be easily understood since the reaction

In Fig. 1, we compare the time evolution of the concen-can occur faster at a larger reaction distance. Therefore; the
tration predicted by the SM and the HSA with the simulationdependence comes in only v¥(r,t) and it is expected to
and we also test the accuracy of the above approximatiopanish at long times in 1D.

[Eq. (19)] for =1 since the approximation is worst for the  The particle size effect on the time evolution of the con-
coagulation model. We set the parameters as follows: centration in 1D is shown in Fig. 2 for the annihilation. The
=2.0x10 °cn?s ™%, the random initial concentratign], parameters are the same as before except the particle size
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FIG. 3. The finite reactivity effect on the time dependence of the
concentration for the annihilation in 1D obtained from the simula- FIG. 4. The time dependence of the concentration for the anni-
tion result. Parameters are the same as in F|g 1 e)p:ept hilation and coagulation in 2D obtained from the SM, HSA, and
simulation results. Parameters are the same as in Fig. 1 except

_ 92 _ — 10
(=0 and 5< 10~ '°m). Since there is no exact result for a [Alo=1.0% 10°m™2 and=1.0<10"*m.

finite o, we compare the SM and HSA results with the simu-

lation. As previously shown, the SM predicts that thele-

pendence disappears in 1D. However, the simulation resul

clearly show that the particle-size effect is important in the

transient time region even in 1D. The HSA predicts the cor- {kol“(l—d/Z)l“(dIZ) 2/(d—2)
Cc

as the time at which the two asymptotic lines of the rate
oefficient in both time limits meet. From the results of the
M results for the finitk®, we find

rect qualitative trends for the size effect. But it deviates from s
the simulation result more at the transient time regionras 25m D

increases. This is consistent with the fact that the HSA canl— 1D. th ¢ " be obtainedt
not describe the fluctuation effect completely. It can be esti—jD /’ kog e>;]a_1ch _crlossov?rr] 'n:ﬁ tcaan 2el oThalnef as
mated from the numerical calculations that the point particle. = ™ (K%)", which is larger than that of Eq21). Therefore,

approximation{Eq. (7)] is valid wheno<1.0x 10~ °m. As the slope change occurs earlier in the SM. It is worthwhile to

expected, the particle size effect disappears at long timeg'.o'[eﬁ.that tt?ereihoch;r _c;tdflgzr\(/:\?a?gzs of the slope of the rate
We can conclude that as gets smaller, the long time CO€Mcientior e nfinitek. Wve tin

(d<2). (21

asymptotic behavior appears at an earlier time. This can help o2 [T(di2—1)]2

to verify the universal behavior in higher dimensions with to~ —— —} (d>2), (22)
the experiments. For the investigation of the particle size 47D | T'(d/2)

effect by the simulation, one needs to be careful in checking ) 2Hd—1)

the convergence of the result because a smaller size of the o |I(1-d2) d<2 de1 03
lattice spacing is required. For example, the data in Fig. 2 are ¢ 4D w12 ( : ) (23
obtained by using the size of the lattice spacing down to

about 510 ¥ m. In Figs. 4 and 5, we plot the time evolution of the con-

The simulation results for the finite reactivity effect on the centration for the annihilation and the coagulation in 2D and
time evolution of the concentration for several values of the
reaction probability in 1D are shown in Fig. 3 for the anni- o
hilation model. The parameters are the same as in Fig. 1
except the reaction probability. As the SM predicts, the be-
haviors at short times are different depending on whekAer
is infinite (the slope of 1/2or finite (the slope of L At long
times, all the curves show the slope of 1/2, which is inde-
pendent of the reactivity24,25. In fact, the slope for the
infinite reactivity is 1/2 at both short and long time limits in
1D. This makes the curve nearly linear. Fbr 2, however,
the long time slope becomes 1 for any reactivity but the
amplitude depends slightly on the reactiviisee Eqs(10)
and (11)]. Lin et al. [23] showed by the 3D simulation for . ' .
the infinite k° that, at early times, the slope is in the range Dy E— TR 0 o 8
0.8~0.9 not unity. Since the slope changes from 1/2 at short log,, t
times to 1 at long times in 3D, it appears that their simulation 10
may not have reached sufficiently short times. FIG. 5. The time dependence of the concentration for the anni-

Some people introduced the crossover titpeat which  hilation and coagulation in 3D obtained from the SM, HSA, and
the reaction-limited behavior is changed to the diffusion-simulation results. Parameters are the same as in Fig. 4 except
limited behaviol 25,29,3Q. Let us define the crossover time [A],=1.0x107°m™3,

——HSA
Simulation

log,, [AVIA],

'
w
L
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T " T " T T T V. CONCLUDING REMARKS

We have discussed the kinetics of the single species reac-
tion, A+ A— «A. The long time asymptotic power law be-
havior results from the dimensional restriction rather than the
microscopic fluctuation which, however, affects the dynam-
ics significantly. The simulation results are compared with
i the various theoretical approaches. The main conclusions are
as follows:

(1) The SM is exact in the short time and/or the low
. concentration limits for all dimensions. It also becomes exact
in the long time limit ford>2.

(2) Regarding the reactivity effect, the SM predicts the
correct behavior. The asymptotic short time behavior of
[A]"1—[A]y ' is ~t for the finitek® and ~t? for the infi-
nite k° for all dimensions. At long timed,A]~t~2 with a

FIG. 6. The time dependence of the rate coefficient for the an— mijn(1,d/2) but the concentration is independenk8fonly
nihilation predicted in the SM and the HSA in several dimensionsgg, <2

(d's) for p=1.

log, , k(t)/c*

(3) The SM predicts that the pair correlation function is
always independent af. However, the pair correlation func-
3D, respectively. We set the parameters as follows:2.0  tion and, therefore, the rate coefficient are shown to be inde-
x10%cm 25l [A],=1.0x10m22D) and 1.0 Pendent ofa only in the short time, long time, and/or low
X 107°m~2 (3D) (the number density is 0.1 in both dimen- concentr_atlop I|r_n|ts. In these cases, the concenyratlo.n for the
siong, o=1.0x10"°m, andp=1. In both dimensions the coagulation is simply related to that for the annihilation.

exact results have never been obtained. Therefore, the simu- (4) The SM predicts that the particle size effect disappears

lation results are expected to be useful to test the approxf-n the long time limit ford<2 and at all imes in 1D. How-

. - . . .__ever, the HSA and simulation results reveal that the particle-
mate theories. Surprisingly, the HSA gives nearly |dent|calSize effect becomes apparent in the transient time regime
results with those of the simulation. This means that the HSAeven in 1D. Of course, it becomes more important in higher
can describe many particle problem fairly well by incorpo'dimensioné '

rating the indirect pair correlat'ion through the KSA. When (5) The HSA is found to give the numerically exact result
one needs the accurate numerical data for the present systefy, 4| times in 2D and 3D.

the HSA ford>2 and the approximate solution E.9) for (6) A numerical method by which the exact result can be
d=1 are very useful. The computational cost for the simu-

Rl , . obtained for a finite reactivity in the annihilation model is
lation in 3D is very high23]. _ _suggested in 1D. We also present an approximate solution
It is very interesting that the SM also gives the numeri-tq an arbitrarye and for the infinite reactivity in 1D under

cally exact result at long times in 3D. To clarify the dimen- e assumption that the rate coefficient is independent. of

sional dependence, we plot the time evolution of the raterpis solution becomes exact in the short and long time lim-
coefficient predicted in the SM and the HSA for several di-ji5

mensions for the infinite reactivity in Fig. 6 in reduced units.
For non-integer dimensions, we perform the inverse Laplace
transform of Eq.(A6) for the SM and utilize the point par-
ticle approximation Eq(7) for the HSA. It is clearly shown This work was supported by Grant No. 1998-015-D00148
that the SM gives the exact rate coefficient at long times nofrom the Basic Science Research Program, Ministry of Edu-
only 3D but also above 2D since the HSA is numerically cation, and by the Korea Science and Engineering Founda-
exact above 2D. For higher dimensions, the results aréion through the Center for Molecular Catalysis at Seoul Na-
shown to coincide with each other earlier. The well-knowntional University.

fact that the SM becomes more accurate as the dimensional-

ity increases is numerically confirmed. This result indicates APPENDIX A: GENERAL RESULT

that the fluctuation effect gets smaller since the diffusion OF THE SMOLUCHOWSKI APPROACH

becomes a more effective mixing mechanism in higher di-

mensions. Hence, we conclude that the fluctuation effect can When the last term in the right hand side in £4).can be

be ignored and the SM becomes exact at long timesifor neglected, we can solve the results of HSA analytically for
>2. This is the reason why the SM has been so successful #ie following random initial condition and the radiation
3D. We hope that this exact long time result could be aboundary condition.

stimulus to finding an exact solution for all times in higher
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dimensions or at least a rigorous proof of the above fact. p(r.0=1, (A1)
For the critical 2D, the results of both theories in Fig. 6 d

converge slowly due to the logarithmic correction. Equation {—p(r,t)} =koCyp(a,t), (A2)

(14) reveals that the rate coefficient becomes independent of dr =0

k® and o at long times also in 2D but the dependence disap-
pears slowly. p(r—oo,t)=1, (A3)
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whereCy is defined in Eq(8). The solution in terms of the Laplace transfofms)zfgdt f(t)e !, is given by

1 Cdkor 7d/2+le/2, 1(r V S/D)
p(r,s)=—41- ,
s 0" Y2 CykOK gjp—1(0VSID) + VS/IDKgp( o Vs/D)]

(A4)

whereK, is the modified Bessel function of the second kind.where() (x)=expK?)erfc(x) with erfc(x) the complementary
Using Eq.(3) or from the well known expressida1] error function. For the finite reactivity case, no exact solution
has been obtained. However, one can obtain the exact result
d numericallyfrom Egs.(A7) and (B1) with the well known
ap(r,t)} ' (AS) relation[41] between rate coefficients with finite and infinite
r=c reactivities to give

1
k(t) = C_d

the rate coefficient can be obtained from the pair correlation o 0
function as[42,43 11 -1 K"Kexact S,K"— ) B2
A A AR 0 '
3 ko\/%Kd/z(O'\/%) [Al [Alo 5%K exack S,K0— ) + sk
k(s)= . This numerical calculation is superior to the simulation
Cyk%sKgjo—1(0\s/D)+5Vs/DK (o \s/D) method because it is free of stochastic noises. Note the con-

(A6) centration is independent of the reactivity in the long time

The concentration can be obtained from the following rela—IImIt (s—0) and Eq.(16) holds in the short time limit
tion to give Eq.(8): (5—2). o .
N If the rate coefficient is assumed to be independent,of

B - we can obtain the approximate solution for an arbitrary
11 A2k , (A7)  using Eq.(B1) as
[Al [Alo s
~ _ 1 (1— a/2)kFKeyacf S, K°—)
whereL ~![f(s)] denotes the inverse Laplace transform of — —~L? . (B3
(s). [Al [Alo K oyacl S,K°— ) +sK°

For the infinite reactivity, this equation reduces to
APPENDIX B: NUMERICALLY EXACT

AND APPROXIMATE SOLUTIONS IN ONE DIMENSION 1 1 (2—=a)(Q(2[AlyWDt)—1) -
The exact rate coefficient for the infinite reactivity can be (Al [Alo 2[A1Q(2[A]p\DY)

readily obtained from the result of Torney and McConnell

[3] for a=0 as which can be rearranged into E(L9). Equation(B3) be-

comes exact in the short and long time limits where the rate
coefficient becomes independentmflt is not only exact for

JAD/ 7t —4[ A]o,DQ(2[ A]o\Dt)

Kexackt) = , (1)  the annihilation model but also in the low-concentration
Q(2[Alo\/Dt)? limit.
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